

Cambridge O Level

CHEMISTRY 5070/12

Paper 1 Multiple Choice May/June 2020

1 hour

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

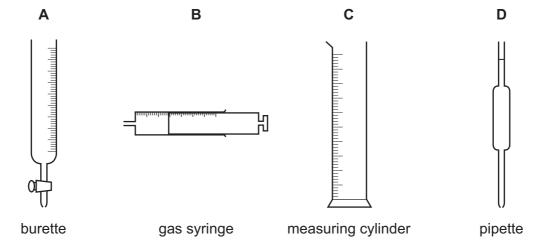
INSTRUCTIONS

There are **forty** questions on this paper. Answer **all** questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

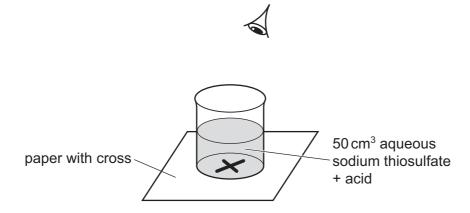

This document has 20 pages. Blank pages are indicated.

IB20 06_5070_12/3RP © UCLES 2020

[Turn over

1 The diagram shows four pieces of apparatus that are used to measure the volume of a gas or liquid.

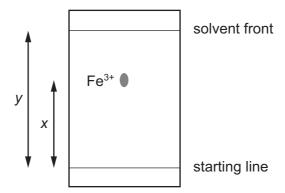
Which piece of apparatus should always be filled to the same level?


2 Aqueous sodium thiosulfate reacts with acid to make a precipitate of sulfur.

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$$

A student investigates the effect of temperature on the rate of this reaction.

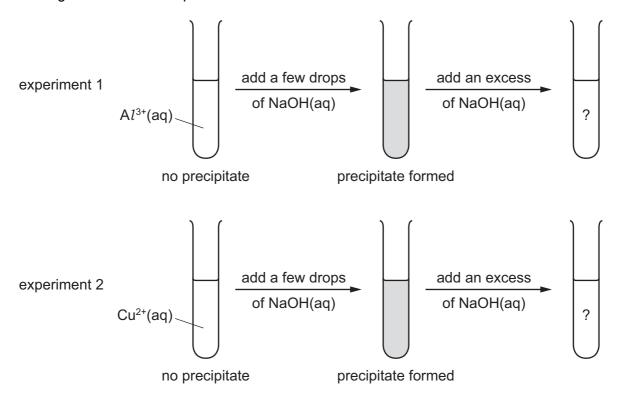
The student:


- places a piece of paper with a cross on it below the reaction mixture as shown in the diagram
- measures the time taken for the cross to no longer be seen
- repeats the reaction at different temperatures.

Which apparatus is needed for this investigation?

- A balance, pipette, stop-clock
- **B** balance, stop-clock, thermometer
- **C** burette, gas syringe, thermometer
- **D** measuring cylinder, stop-clock, thermometer

3 A paper chromatography experiment is carried out to find an R_f value for $Fe^{3+}(aq)$. The result is shown.


To make the spot containing $Fe^{3+}(aq)$ more visible, the paper is sprayed with aqueous sodium hydroxide so that a precipitate of iron(III) hydroxide forms.

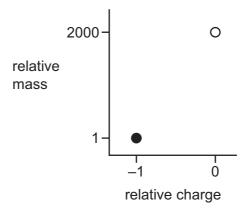
Under the conditions of the experiment, the R_f of $Fe^{3+}(aq)$ is given by1..... and the colour of the precipitate is2......

Which row correctly completes gaps 1 and 2?

	gap 1	gap 2
Α	<u>x</u> y	red-brown
В	<u>x</u> y	green
С	$\frac{y}{x}$	red-brown
D	$\frac{y}{x}$	green

4 The diagram shows two experiments.

What are the results of adding an excess of NaOH(aq) in each experiment?


	experiment 1	experiment 2	
Α	✓	✓	key
В	✓	x	√ = precipitate remains
С	x	✓	x = precipitate dissolves
D	X	X	

- 5 Which methods of separation require a change of state from liquid to gas?
 - 1 paper chromatography
 - 2 crystallisation
 - 3 distillation
 - 4 filtration
 - **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 3 and 4

6 Hydrogen sulfide, H_2S , and hydrogen chloride, HCl, are both gases at temperatures above $-50\,^{\circ}C$.

Which gas will diffuse most rapidly at the temperature given?

- A hydrogen chloride at -40 °C
- **B** hydrogen chloride at –20 °C
- C hydrogen sulfide at -40 °C
- **D** hydrogen sulfide at –20 °C
- 7 The diagram shows the relative mass and the relative charge of two particles, O and ●, present in atoms and ions.

Which of these particles are present in a hydrogen atom and in a hydrogen ion?

	Н	H ⁺
Α	both ○ and ●	both ○ and ●
В	both ○ and ●	O but not ●
С	● but not ○	neither ○ nor ●
D	O but not ●	● but not ○

- 8 Which ion has the most shells that contain electrons?
 - **A** Al^{3+}
- **B** Be²⁺
- **C** N³⁻
- $D S^{2-}$
- **9** Which substance conducts electricity both when solid and when molten?
 - A an alloy
 - B a hydrocarbon
 - **C** a metal oxide
 - D a salt

- 10 When they react together, which pair of elements form an ionic compound?
 - A carbon and hydrogen
 - B hydrogen and chlorine
 - C lithium and oxygen
 - D sulfur and oxygen
- 11 How many shared electrons are in one carbon dioxide molecule?
 - **A** 2
- **B** 4
- C
- **D** 12
- **12** Element X has a lattice of positive ions and a 'sea of electrons'.

$$\begin{array}{|c|c|c|}\hline (+)e^- (+)e^- (+)e^- (+)e^- (+)e^- \\ e^- (+)e^- (+)e^- (+)e^- (+)e^- (+)e^- \\ (+)e^- (+)e^- (+)e^- (+)e^- (+)e^- \end{array}$$

Which property will X have?

- **A** It conducts electricity by the movement of ions and electrons.
- **B** It has a high melting point.
- **C** It is decomposed by an electric current.
- **D** It is not malleable.
- 13 Which row shows the correct state symbols for the reaction between calcium carbonate and dilute hydrochloric acid? (The conditions are room temperature and pressure.)

	CaCO ₃ +	- 2HC <i>l</i> -	→ CaCl ₂ +	+ H ₂ O +	+ CO ₂
Α	S	aq	aq	aq	g
В	s	1	aq	- 1	g
С	s	1	I	aq	g
D	s	aq	aq	1	g

14 The expression shown for the value of A_r for fluorine is incomplete.

$$A_r$$
 (fluorine) = $\frac{\text{average mass of one1..... of fluorine}}{\text{......2...... of the mass of one atom of } {}_{6}^{12}\text{C}}$

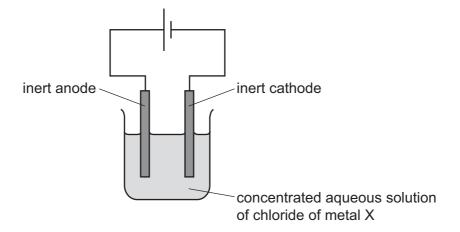
How should the gaps in the expression be correctly completed?

	gap 1	gap 2
A	atom	<u>1</u> 6
В	atom	<u>1</u> 12
С	molecule	<u>1</u> 6
D	molecule	<u>1</u> 12

15 A mixture of $5\,\text{cm}^3$ of CH_4 and $100\,\text{cm}^3$ of air is exploded. Assume air is $80\%\,\,\text{N}_2$ by volume and $20\%\,\,\text{O}_2$ by volume. The resulting mixture is cooled. All volumes are measured at room temperature and pressure.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$

What is the composition of the resulting gas?


	5 cm ³ of CO ₂	10 cm ³ of O ₂	80 cm ³ of N ₂	10 cm ³ of steam
Α	✓	✓	✓	✓
В	✓	✓	✓	x
С	✓	X	✓	✓
D	✓	X	✓	x

16 Which arrangement is used to electroplate copper onto a steel key?

	electrolyte	anode (positive electrode)	cathode (negative electrode)
Α	aqueous copper(II) sulfate	piece of pure copper	steel key
В	aqueous copper(II) sulfate	steel key	piece of pure copper
С	dilute sulfuric acid	piece of pure copper	steel key
D	dilute sulfuric acid	steel key	piece of pure copper

17 The chloride of metal X is dissolved in water.

A concentrated solution of this chloride is electrolysed using inert electrodes.

X is above sodium in the reactivity series.

In addition to chlorine, which gas is liberated and at which electrode?

	gas	liberated at electrode
Α	hydrogen	anode
В	hydrogen	cathode
С	oxygen	anode
D	oxygen	cathode

- **18** Which change in conditions, for the reaction between zinc and dilute sulfuric acid, increases the rate of reaction by lowering the activation energy?
 - **A** adding a catalyst
 - **B** increasing the concentration of the acid
 - **C** increasing the surface area of the zinc
 - **D** increasing the temperature
- **19** Many reactions can be classified as redox reactions.

Which equations show redox reactions?

1 Mg + 2HC
$$l \rightarrow$$
 MgC l_2 + H₂

2
$$2\text{FeC}l_2 + \text{C}l_2 \rightarrow 2\text{FeC}l_3$$

3 2Na + Br₂
$$\rightarrow$$
 2NaBr

20 Which row correctly shows whether the hydrogen ion concentration and the pH of ethanoic acid are higher or lower than those of hydrochloric acid of the same concentration?

	hydrogen ion concentration	рН
Α	higher	higher
В	higher	lower
С	lower	higher
D	lower	lower

- 21 Which aqueous reagent liberates ammonia from ammonium nitrate on warming?
 - A calcium nitrate
 - B potassium hydroxide
 - C sodium chloride
 - D sulfuric acid
- 22 Two fertilisers are made by mixing chemical compounds.

Fertiliser X contains 500 g of NH₄NO₃ and 500 g of (NH₄)₂SO₄ per kilogram.

Fertiliser Y contains 700 g of NH₄NO₃ and 300 g of CaSO₄ per kilogram.

Which fertiliser contains the higher percentage of nitrogen by mass and which contains the higher percentage of sulfur by mass?

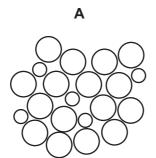
 $[M_r: NH_4NO_3, 80; (NH_4)_2SO_4, 132; CaSO_4, 136]$

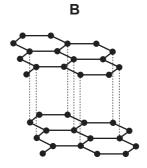
	fertiliser with higher percentage N	fertiliser with higher percentage S
Α	x	X
В	X	Υ
С	Y	X
D	Y	Υ

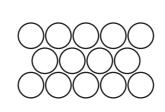
- 23 Which processes occur in the manufacture of sulfuric acid?
 - 1 burning sulfur in air
 - 2 dissolving sulfur dioxide in sulfuric acid
 - 3 dissolving sulfur dioxide in water
 - 4 reacting sulfur dioxide with air
 - **A** 1 and 2
- **B** 1 and 3
- C 1 and 4
- **D** 2 and 4

24 A lump of element X can be cut by a knife.

During its reaction with water, X floats and melts.


What is X?

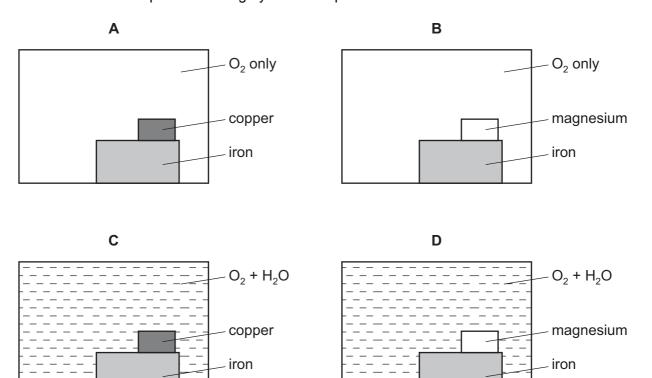

- A calcium
- **B** copper
- C magnesium
- **D** potassium
- 25 Chlorine is passed into separate samples of aqueous potassium iodide and aqueous potassium bromide.


In which solutions is there a colour change?

	KI(aq)	KBr(aq)	
Α	✓	✓	key
В	✓	x	√= yes
С	X	✓	x = no
D	X	X	

26 Which diagram shows the structure of an alloy?

D


27 Which element can only be extracted from its ore using electrolysis?

- A calcium
- **B** copper
- **C** lead
- **D** silver

28 Which equation shows a thermal decomposition that occurs in the blast furnace?

- $\textbf{A} \quad \textbf{C} \, + \, \textbf{O}_2 \, \rightarrow \, \textbf{CO}_2$
- $\textbf{B} \quad \text{CO}_2 \, + \, \text{C} \, \rightarrow \, 2\text{CO}$
- $\textbf{C} \quad \text{CaCO}_3 \, \rightarrow \, \text{CaO} \, + \, \text{CO}_2$
- $\textbf{D} \quad \text{CaO} \, + \, \text{SiO}_2 \, \rightarrow \, \text{CaSiO}_3$

29 Which diagram correctly shows the conditions necessary for the rusting of iron and also the metal that can be used to prevent rusting by sacrificial protection?

30 Aluminium is produced by the electrolysis of pure aluminium oxide. One of the electrodes in the process has to be replaced often.

Which statement is correct?

- **A** The product at the anode reacts with the anode.
- **B** The product at the anode reacts with the cathode.
- **C** The product at the cathode reacts with the anode.
- **D** The product at the cathode reacts with the cathode.
- 31 Which row correctly compares carbon dioxide and methane?

	both contain carbon	both are described as a greenhouse gas	both lower the pH of water when they dissolve in it
Α	✓	X	✓
В	✓	✓	x
С	x	✓	✓
D	x	✓	X

32 Sea water has to be purified in order to obtain drinking water from it.

Which processes are used to purify the sea water?

	fractional distillation	desalination	
Α	✓	✓	key
В	✓	X	√ = used
С	X	✓	x = not used
D	X	X	

33 Which structure represents an isomer of butane?

- 34 Which statement about the organic compounds CH₄, C₂H₄, C₂H₆ and C₃H₈ is correct?
 - **A** Only C_2H_4 and C_2H_6 decolourise bromine water.
 - **B** They are all saturated compounds.
 - **C** They are all unsaturated compounds.
 - **D** They are all hydrocarbons.
- **35** The alkenes are a homologous series.

Which statement about alkenes is correct?

- A An alkene molecule contains four fewer hydrogen atoms than an alkane molecule with the same number of carbon atoms.
- **B** If a food is described as *polyunsaturated* it means that it contains polymers.
- **C** Propene reacts with steam to form propanol.
- **D** The general formula for the alkenes is C_nH_{2n+2} .

- 36 Which organic compound is used as a solvent, a renewable fuel and in the production of vinegar?
 - A ethanoic acid
 - **B** ethanol
 - C propanoic acid
 - **D** propanol
- 37 Which structure shows the carboxylic acid with the lowest relative molecular mass?

A B C D

H—C=O H—C—C=O C=O H—O—C—O—F
O—H H O—H H

38 What is the name of the ester shown?

- A butyl propanoate
- B propyl butanoate
- C propyl ethanoate
- **D** propyl propanoate

39 The diagram shows the structure of a monomer.

Which diagram shows the partial structure of its polymer?

Α

В

_

D

- **40** Which statement about polymers is correct?
 - **A** Nylon and *Terylene* are produced by addition polymerisation.
 - **B** Nylon and *Terylene* both contain amide linkages.
 - **C** Simple sugars are produced by hydrolysing proteins.
 - **D** Starch contains the elements carbon, hydrogen and oxygen.

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	¥	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon			
	=>				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Ą	astatine -			
	>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	moloulum -	116	^	livermorium -
	>				7	z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	O	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡				2	Ф	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	84	lΤ	thallium 204			
											30	Zu	zinc 65	48	ည	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
9 9					1						27	ပိ	cobalt 59	45	格	rhodium 103	77	Ir	iridium 192	109	¥	meitnerium -
		- ;	I	hydrogen 1							26		iron 56		Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
								1			25	M	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	loq	lass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	В	dubnium -
						atc	<u>e</u>				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	₩	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium -
	_				8	:=	lithium 7	#	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	CS	caesium 133	87	ቷ	francium -

71	Γſ	lutetium	175	103	۲	lawrencium	I
					9		ı
69	Tn	thulium	169	101	Md	mendelevium	I
89	ш	erbinm	167	100	Fm	fermium	ı
29	운	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర్	californium	I
65	Д	terbium	159	97	ă	berkelium	ı
64	Вd	gadolinium	157	96	Cm	curium	I
63	Ш	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	1	93	dΝ	neptunium	I
09	βN	neodymium	144	92	\supset	uranium	238
29	P	praseodymium	141	91	Ра	protactinium	231
58	o C	cerium	140	06	Ч	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).